690 research outputs found

    Foray search: An effective systematic dispersal strategy in fragmented landscapes

    Get PDF
    In the absence of evidence to the contrary, population models generally assume that the dispersal trajectories of animals are random, but systematic dispersal could be more efficient at detecting new habitat and may therefore constitute a more realistic assumption. Here, we investigate, by means of simulations, the properties of a potentially widespread systematic dispersal strategy termed "foray search." Foray search was more efficient in detecting suitable habitat than was random dispersal in most landscapes and was less subject to energetic constraints. However, it also resulted in considerably shorter net dispersed distances and higher mortality per net dispersed distance than did random dispersal, and it would therefore be likely to lead to lower dispersal rates toward the margins of population networks. Consequently, the use of foray search by dispersers could crucially affect the extinction-colonization balance of metapopulations and the evolution of dispersal rates. We conclude that population models need to take the dispersal trajectories of individuals into account in order to make reliable predictions

    Investigating the impact of invasive Asian carp on river otter diet and the native fish communities of Indiana

    Get PDF
    Invasive Asian carp (i.e., bighead and silver carp, Hypophthalmic molitric and hypophalmichthy nobilis), threaten native fish populations in Midwestern United States freshwater ecosystems. These species are primarily planktivorous, experience rapid growth rates, and have enhanced predator avoidance traits resulting in a competitive advantage over native fish species. The success of Asian carp may also threaten higher-level predators by altering prey availability, potentially causing a change in predator behavior and diet. Since the coinciding river otter (Lontra canadensis) reintroduction and Asian carp invasion in Indiana’s waterways in 1995, no studies have investigated the impact of Asian carp on higher- level predators. Our objective is to determine the role of Asian carp in the diet of a top predator in Indiana’s waterways, the North American river otter. To determine the impact of Asian carp in otter diet, we will be conducting diet analyses through two methods: gross fecal analysis and stable isotope analysis. We will compare otter diet in a carp-invaded watershed to the otter diet in a carp-free watershed. We are collecting scat at 2 different locations along the carp-invaded Tippecanoe River: Prophetstown State Park, YMCA Camp Tecumseh and 2 different locations in non-carp invaded waterways: Chain’O Lakes State Park and Pigeon River Fish and Wildlife Area. We hypothesize that river otters will select against invasive Asian carp in preference for native species, with which they have coevolved. This result would indicate an increase in predation pressure upon already reduced native fish populations, as well as a reduction in fitness of the predator from limited prey availability. If otters do prefer Asian carp, they may serve as an effective bio control for Asian carp while also creating a positive public perception of otters

    Exceptionally Slow Rise in Differential Reflectivity Spectra of Excitons in GaN: Effect of Excitation-induced Dephasing

    Full text link
    Femtosecond pump-probe (PP) differential reflectivity spectroscopy (DRS) and four-wave mixing (FWM) experiments were performed simultaneously to study the initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats between the A-B excitons were found \textit{only for positive time delay} in both PP and FWM experiments. The rise time at negative time delay for the differential reflection spectra was much slower than the FWM signal or PP differential transmission spectroscopy (DTS) at the exciton resonance. A numerical solution of a six band semiconductor Bloch equation model including nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS results from excitation induced dephasing (EID), that is, the strong density dependence of the dephasing time which changes with the laser excitation energy.Comment: 8 figure

    Decreased expression of breast cancer resistance protein in the duodenum in patients with obstructive cholestasis

    Get PDF
    Background/Aims: The expression of transporters involved in bile acid homeostasis is differentially regulated during obstructive cholestasis. Since the drug efflux transporter breast cancer resistance protein (BCRP) is known to transport bile acids, we investigated whether duodenal BCRP expression could be altered during cholestasis. Methods: Using real-time RT-PCR analysis we determined mRNA expression levels in duodenal tissue of 19 cholestatic patients. Expression levels were compared to 14 healthy subjects. BCRP protein staining was determined in biopsies of 6 cholestatic and 6 healthy subjects by immunohistochemistry. Results: We found that in patients with obstructive cholestasis mean duodenal BCRP mRNA levels were significantly reduced to 53% and mean protein staining was reduced to 57%. Conclusions: BCRP, a transporter for bile acids and numerous drugs, appears to be down-regulated in the human duodenum during cholestasis. The clinical impact of these results has to be investigated in further studies. Copyright (c) 2006 S. Karger AG, Basel

    Macroscopic superposition states of ultracold bosons in a double-well potential

    Full text link
    We present a thorough description of the physical regimes for ultracold bosons in double wells, with special attention paid to macroscopic superpositions (MSs). We use a generalization of the Lipkin-Meshkov-Glick Hamiltonian of up to eight single particle modes to study these MSs, solving the Hamiltonian with a combination of numerical exact diagonalization and high-order perturbation theory. The MS is between left and right potential wells; the extreme case with all atoms simultaneously located in both wells and in only two modes is the famous NOON state, but our approach encompasses much more general MSs. Use of more single particle modes brings dimensionality into the problem, allows us to set hard limits on the use of the original two-mode LMG model commonly treated in the literature, and also introduces a new mixed Josephson-Fock regime. Higher modes introduce angular degrees of freedom and MS states with different angular properties.Comment: 15 pages, 8 figures, 1 table. Mini-review prepared for the special issue of Frontiers of Physics "Recent Progresses on Quantum Dynamics of Ultracold Atoms and Future Quantum Technologies", edited by Profs. Lee, Ueda, and Drummon

    Quasicrystals and their approximants in 2D ternary oxides

    Get PDF
    2D oxide quasicrystals (OQCs) are recently discovered aperiodic, but well-ordered oxide interfaces. In this topical review, an introduction to these new thin-film systems is given. The concept of quasicrystals and their approximants is explained for BaTiO3 - and SrTiO3 - derived OQCs and related periodic structures in these 2D oxides. In situ microscopy unravels the high-temperature formation process of OQCs on Pt(111). The dodecagonal structure is discussed regarding tiling statistics and tiling decoration based on the results of atomically resolved scanning tunneling microscopy and various diffraction techniques. In addition, angle-resolved ultraviolet photoemission spectroscopy and X-ray photoelectron spectroscopy results prove a metallic character of the 2D oxide

    Improved kinetics of rIX-FP, a recombinant fusion protein linking factor IX with albumin, in cynomolgus monkeys and hemophilia B dogs: Improved kinetics of rIX-FP

    Get PDF
    Prophylaxis of hemophilia B, at present, requires multiple infusions of human factor IX (FIX) concentrates per week. A FIX molecule with a prolonged half-life has the potential to greatly improve convenience of, and adherence to, prophylaxis

    Si-based n-type THz Quantum Cascade Emitter

    Get PDF
    Employing electronic transitions in the conduction band of semiconductor heterostructures paves a way to integrate a light source into silicon-based technology. To date all electroluminescence demonstrations of Si-based heterostructures have been p-type using hole-hole transitions. In the pathway of realizing an n-type Ge/SiGe terahertz quantum cascade laser, we present electroluminescence measurements of quantum cascade structures with top diffraction gratings. The devices for surface emission have been fabricated out of a 4-well quantum cascade laser design with 30 periods. An optical signal was observed with a maximum between 8-9 meV and full width at half maximum of roughly 4 meV

    Effect Of Nucleation Time With Tmal Preflow Assistance On Reducing Dislocation Density Of Aln Layer For AlGaN-Based UVC LED

    Get PDF
    AlGaN-based UVC LEDs have now received numerous attentions due to their ability to eliminate coronaviruses which cause COVID-19 disease. It is therefore essential to improve the efficiency of the LEDs to make them compatible for large scale applications. One of the major challenges to improve the efficiency is to reduce the dislocation density in AlN layer; the base layer for the LEDs, to be below 109 cm-2 . Thus far, many works have been proposed to reduce the dislocation in the AlN layer. However, by properly adjusting the AlN nucleation time in the growth of the AlN layer, the dislocation can be reduced. The effect might be more significant with TMAl preflow assistance, which is applied after the growth of the nucleation. In this work, we will present the effect of the nucleation time with the assistance of TMAl preflow on reducing the dislocation density in the overgrown AlN layer. With 60 seconds of nucleation, the density of the dislocation in the AlN layer can be as low as 9.0 x 108 cm-2 . In addition. the role of the TMAl preflow assistance will be justified. The AlN layer was subsequently used to grow a 255 nm UVC LED. The diode characteristic and CL emission of the LED will be discussed towards the end of the presentation
    corecore